A Temporal-Spatial Iteration Method to Reconstruct NDVI Time Series Datasets

نویسندگان

  • Lili Xu
  • Baolin Li
  • Yecheng Yuan
  • Xizhang Gao
  • Tao Zhang
چکیده

Reconstructing normalized difference vegetation index (NDVI) time series datasets is essential for monitoring long-term changes in terrestrial vegetation. Here, a temporal–spatial iteration (TSI) method was developed to estimate the NDVIs of contaminated pixels, based on reliable data. The NDVIs of contaminated pixels were first computed through linear interpolation of adjacent high-quality pixels in the time series. Then, the NDVIs of remaining contaminated pixels were determined based on the NDVI of a high-quality pixel located in the same ecological zone, showing the most similar NDVI change trajectories. These two steps were repeated iteratively, using the estimated NDVIs as high-quality pixels to predict undetermined NDVIs of contaminated pixels until the NDVIs of all contaminated pixels were estimated. A case study was conducted in Inner Mongolia, China. The accuracies of estimated NDVIs using TSI were higher than the asymmetric Gaussian, Savitzky–Golay, and window-regression methods. Root mean square error (RMSE) and mean absolute percent error (MAPE) decreased by 16.7%–86.6% and 18.3%–33.0%, respectively. The TSI method performed better over a range of environmental conditions, the variation of performance by the compared methods was 1.4–5 times that of the TSI method. The TSI method will be most applicable when large numbers of contaminated pixels exist. OPEN ACCESS Remote Sens. 2015, 7 8907

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Line...

متن کامل

Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI

Studies related to vegetation dynamics in heterogeneous landscapes often require Normalized Difference Vegetation Index (NDVI) datasets with both high spatial resolution and frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM) for accurately and effectivel...

متن کامل

Evaluation of Temporal Resolution Effect in Remote Sensing Based Crop Phenology Detection Studies

Remote sensing based phenology detection method has been employed to study agriculture, forestry and other vegetations for its potential to reflect the variations in climate change. These studies usually utilized time series Normalized Difference Vegetation Index (NDVI) generated from various sensors through a Maximum Value Compositing (MVC) process, which minimized the contamination from cloud...

متن کامل

Spatio-Temporal Reconstruction of MODIS NDVI Data Sets Based on Data Assimilation Methods

Consistent Normalized Difference of Vegetation Index (NDVI) time series, as paramount and powerful tool, can be used to monitor ecological resources that are being altered by climate and human impacts, since its temporal evolution is strongly linked to changes in the state of land surface. However, the noise caused mainly by cloud contamination, heavy aerosol, atmospheric variability and signal...

متن کامل

Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products

Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015